

Overview

Today's Objectives:

Share Site Conceptual Site Model, including refinements from last update (October 2018)

CSM

- Site setting (Geology, River, Pathways)
- PFAS Compounds
- Site PFAS Data (Residential, Soil, Groundwater, Outfall 002)
- River PFAS Data (River)
- River Mass Flux Model

Data Considered / Investigations Conducted

Sampling Program Investigation Name	Date	Groundwater	Residential Groundwater	Cape Fear River	Triomterries	Outfall 002	Soil / Leachatte	Art.	Wipe Samples	Rain Water	
RCRA Program Investigations	Pre-2017	V		✓	√		✓				
Supplemental Groundwater Sampling	Aug-17	✓				✓					
Supplemental Soil and Surface Water Sampling	Aug-17				V		V				
Cape Fear River - Local 1	Sep-17			✓	✓	✓					
Additional Investigation	Nov-17	✓				✓	✓				
Stack Testing	Jan-18							✓			
Stormwater Sampling	Jan-18	✓ .			✓	V					
Former Outfall Sampling	Feb-18				✓						
VE-South Investigation	Feb-18						V		1		
Cape Fear River - Local 2	May-18			✓	✓	✓					
Cape Fear River – Regional	Jun-18			V	V	✓					
Terracotta Pipe Investigation	Jul-18	✓					✓				
South East Perched Zone Investigation	Fall 2018	V									
Blast Zone Investigation	Fall 2018	✓									
Residential Program	On-going		V								
Rain Water Program	On-going									✓	_ 3 _

Actions Taken and Underway

Abatement Action	Implemented	Unelanvay	Industign
Diversion of Process Waste Water	✓		
Targeted Site Groundwater Extraction	✓	✓	
Line Cooling Water Channel	✓		
Line Sedimentation Ponds	✓		
Treatment of Old Outfall Water			✓
Residential Treatment Systems	✓	✓	
Process Air and Water Emissions Abatement	✓	✓	✓
Consent Order Paragraph 12 & 16 Actions			✓

Chemours is taking multiple, rapid actions to:

- Reduce process emissions of PFAS to the environment including the River
- Reduce flux of PFAS to the Cape Fear River

Conceptual Site Model Diagram

Note: Generalized Geologic Sequence

Not to Scale. Vertical exaggeration to show lithology.

31-Jan-2019

FW003044

River Mass Flux Inputs Diagram

Mass Flux Model Estimated vs. Observed River Concentrations

- Kings Bluff Intake Canal.
- Data sources: Primarily CFPUA, Brunswick County and NCDEQ
 Inemours

Regional River Program PFAS Data

Chemours"

ng/L – nanograms per liter, equivalent to ppt (part per trillion) * Dup – Duplicate sample

PFAS Types

Class		Product	Byproducts & Associated Compounds
Perfluoroalkyl carboxylic acids (PFCAs) <u>EPA 537 Mod</u>	PFOA DH		Other longer and shorter PFCAs
Perfluoroalkyl sulfoni acids (PFSAs) <u>EPA 537 Mod</u>	PFOS		Other longer of the longer and shorter PFSAs of the longer of the longe
Perfluoroalkyl ether carboxylic acids (PFECAs) EPA 8321 Mod & Table 3 SOP	HFPO-DA (i.e. GenX) <i>EPA 8321 Mod</i>		Other ethers, e.g. PFMOAA Table 3 SOP
Perfluoroalkyl ether sulfonic acids (PFESAs) <u>Table 3 SOP</u>	Nafion -	Polymerized Monomers -	Nafion Monomers etc., (i.e. byproducts)

PFAS Analytical Methods

Analytical Method	PFAS Quantified
EPA 537 Mod	PFCAs, PFSAs, others (e.g. sulfanoamides, telomers, etc.,)
EPA 8321 Mod	HFPO-DA (i.e. GenX) [can do with methods 537 and Table 3]
Table 3 SOP	PFECAs & PFESAs

Analytical capabilities continue to develop; more compounds are being added

Acronyms

- PFAS per- and polyfluoroalkyl substances
- PFCAs perfluorocarboxylic acids
- PFSAs perfluorosulfonic acids
- HFPO-DA Hexafluoropropylene oxide dimer acid (i.e. C3-HFPO-DA GenX)
- PFECAs Perfluoroethercarboxylic acids
- PFESAs Perfluoroethersulfonic acids
- PFMOAA Perfluoro-1-methoxyacetic acid
- PFOA perfluorooctanecarboxylic acid
- PFOS perfluorooctanesulfonic acid

HFPO-DA Characteristics & Anticipated Fate Data from DuPont studies

- Common shortened names: HFPO-DA, C3DA, HFPO-DA, GenX, FRD-903
- Other forms: C3 HFPO-DA ammonium salt
 Negative charge paired with a positively charged ammonium ion, NH₄⁺
- Acid dissociation (pKa): 2.45.
 Will be negatively charged in most natural waters.
- Biodegradation: not anticipated
- Solubility in water: 100% (infinite)
- Octanol-water partition coefficient, K_{ow}: 2
 Organic carbon-water partition coefficient, K_{oc}: 12 to 12.6
 Mobile in aquifer. Some sorption to activated carbon.
 Activated carbon is a stronger sorbent than the aquifer.
 Empirical measurements by DuPont Haskell Laboratory

- Density for a solution of 86% HFPO-DA and 14% water: 1.7 g/mL at 20°C
- Vapor pressure of 2.3 mm-Hg at 20°C

Air	Seil	Groundwater	Surface Water
Anticipates Possibly transported	Can leach to	Flows with	Concentrations
adhered to particles	groundwater with	groundwater;	reduced primarily
authered to particles	precipitation events	limited retardation	by dilution

Site Location

Fayetteville Works: 2,200-acre property northwestern Bladen County, NC

Location: 22828 NC-87, Fayetteville, NC 28306, USA; Bladen County

Topography: Mostly flat. River to the East down a ~90 feet bluff/hill

Site Geology & Hydrogeology

Cape Fear River Watershed

- Entire catchment 9,164 square miles.
 - River Drains 4,852 square miles at Site.
 - River Drains 5,255 square miles at Kings Bluff Intake.
 - An 8% increase in drainage area between
 Site and Kings Bluff Intake.
- River Mile Distances from River Start:
 - River Mile 76.5: WO Huske USGS Gauge.
 - River Mile 83: Bladen Bluffs.
 - River Mile 132: Kelly USGS Gauge.
 - River Mile 132: Kings Bluff.
 - River Mile 167: Site to Wilmington.
- Kings Bluff Intake Water Source for:
 - CFPUA (i.e. Wilmington, NC)
 - Pender County
 - Brunswick County

Public Utilities' Intake Location

- Kings Bluff Intake Water Source for:
 - CFPUA (i.e. Wilmington, NC)
 - Pender County
 - Brunswick County

http://www.lcfwasa.org/facilities-and-customers

Site at River

- River to East of Site
- River at Bottom of Bluff
- Key Features
 - Willis Creek
 - Site River Water Intake
 - LTW Wells
 - Outfall 002
 - Old Outfall Channel
 - Georgia Branch Creek
 - Seeps at Site

18

Seeps at River

FW003058

South Seep Near River

20 31-Jan-2019

FW003059

Center Seep Near River

21 31-Jan-2019

FW003060

Perched Zone Seeping Water

22 31-Jan-2019

FW003061

North Seep at River

31-Jan-2019

FW003062

Seeps Summary

- Identified three locations where flow from combined seeps enters the Cape Fear River from Site property
- Likely includes seepage contributions from:
 - Perched Zone
 - Potentially Surficial Aquifer
 - Potentially Black Creek Aquifer
- Seep volumetric flow and concentrations will be investigated

Conceptual Site Model Diagram

FW003064

HFPO-DA: Air, Soil, Groundwater, Outfall 002

Historical PFAS Release Points

Historical PFAS Release Points	Resultant PFAS Detections		
Air Emissions	Residential Well Groundwater Site Groundwater Outfall 002 Site and Surrounding Soils		
Wastewater to Outfall 002 Prior June 21, 2017	Cape Fear River Black Creek Aquifer by River		
Terra Cotta Pipe	Perched and Surficial Groundwater Old Outfall 002 via Groundwater		
October 2017 Scrubber Upset	Surficial Soils Perched Groundwater Outfall 002		

Air to Soil Residential Well Sampling Results

- Residential Well Data available through December-2018. Includes both Chemours and NCDEQ results.
- Wind rose shows wind directions.
- Aerial deposition occurs in all directions.
- Deposition aligned with primary and secondary wind directions.

28

Soil Leachate HFPO-DA Data 28 November to 1 December 2017

- Synthetic precipitation leaching procedure (SPLP) performed for top 6 inches of Site soil samples.
- Leachate extract (2-L water per 100-g soil) analyzed for HFPO-DA.
- Spatial distribution is similar to groundwater, highest concentration near Vinyl Ethers South (VES).

Groundwater HFPO-DA Data November & December 2017

<u>Note</u>

The 5 Long Term Wells (LTW) at the river are repeated in each figure.

30 31-Jan-2019

FW003069

Site Drainage Network and Outfall 002 and Present Water Use at Site

Outfall 002 Concentrations

Outfall 002 captures: non-contact cooling water, treated Kuraray and DuPont process wastewater, treated sanitary wastewater and stormwater from the facility

PFAS in Cape Fear River PFOA, PFOS, etc.,

Environ. Sci. Technol. 2007, 41, 5271-5276

Perfluorinated Compounds in the Cape Fear Drainage Basin in North Carolina

SHOJI NAKAYAMA, MARK J. STRYNAR, LAURENCE HELFANT, PETER EGEGHY, XIBIAO YE, AND ANDREW B. LINDSTROM*

National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711

 PFAS are present throughout Cape Fear Watershed

Sampling Program Locations

Local Programs (Sept. 2017, May 2018)

Chemours"

Regional River Program (June 2018)

35 31-Jan-2019

River Sampling Locations

Local Programs (Sept. 2017, May 2018)

◆ ···· 25 % of River width

Sampling Location Selection Rationale:

 Assess how concentrations differ across cross-section, particularly close to Site

Regional River Program (June 2018)

*Thalweg: Deepest part of the channel cross section

Sampling Location Selection Rationale:

- Collect well mixed representative samples along length of the River.
- Majority of flow typically occurs at the thalweg. Typically most mixed part of River and representative of average concentrations.

36

PFCAs + PFSAs May 2018

LTW – Long Term Well

37

FW003076

31-Jan-2019

ED_005565_00003495-00037

HFPO-DA May 2018

ng/L – nanograms per liter, equivalent to ppt (part per trillion)

LTW - Long Term Well

38 31-Jan-2019

FW003077

PFECAs + PFESAs May 2018

ng/L – nanograms per liter, equivalent to ppt (part per trillion) LTW – Long Term Well Note 1: Maximum MDL,120 ng/L, is the statistical MDL for PFESA BP 1, the highest Table 3 MDL.

Note 2: Non-detect data are plotted at 12 ng/L, 39 the lowest detected PFMOAA concentration.

Primary Local Sampling Program Observations

- PFCAs and PFSAs are not related to Site
- HFPO-DA, PFECAs and PFESAs
 - Present only after Site; are related to the Site
- HFPO-DA remains below health goal of 140 ng/L
- Actions taken and underway by Chemours have reduced and will continue to reduce Cape Fear River HFPO-DA, PFECA and PFESA concentrations

Regional River Sampling Results (June 5th to 8th 2018) 2 of 2

ng/L – nanograms per liter, equivalent to ppt (part per trillion)

41 31-Jan-2019

FW003080

Regional River Sampling Results (June 5th to 8th 2018) 1 of 2

ng/L – nanograms per liter, equivalent to ppt (part per trillion) * Dup – Duplicate sample

Chemours^{*}

Regional River Observations 2 of 2

Data Observations

- PFCAs and PFSAs present along entire River not attributed to Site
- HFPO-DA and PFECAs only present after Site attributed to Site
- Haw River highest PFCAs; Little River highest PFSAs
- HFPO-DA remains below health goal of 140 ng/L
- Actions taken and underway by Chemours have reduced and will continue to reduce Cape Fear River HFPO-DA, PFECA and PFESA concentrations.

Recent Table 3 Data in Cape Fear River

Sampler	Chemours	Chemours	Chemours	CFPUA	Chemours
	CFR-09	RM-84	Kings Bluff	Sweeney Raw	Kings Bluff
Location	CFN-U3	VIAI-04	Canal	Sweeney naw	Canal
Miles Down River from Site	5	8	55	55	55
Date	10-May-2018	6-Jun-2018	6-Jun-2018	8-Oct-2018	1-Nov-2018
HFPO-DA; GenX	20	17	10 U	11	1 5
PFMOAA	67	80	57	7.69	26
PFO2HxA	20	21	19	5.23	13
PFO3OA	88 U	88 U	88 U	ND	3.2
PFO4DA	97 U	97 U	97 U	1.55	2 U
PFO5DA or TAF	110 U	110 U	110 U	٠.٠	2 U
PFECA G	96 U	96 U	96 U	ND	2 U
PMPA (PFMOPrA)	84 U	84 U	84 U	4.15	1 6
PEPA (PFMOBA)	100 U	100 U	100 ป	ND	2.3
PFESA BP 1	120 U	120 U	120 U	ND	2 U
PFESA BP 2	95 €	95 U	95 U	ND	2 U
Total	107	118	76	30	76
River discharge (cf/s)	2,138	2,085	2,490	11,100	8,770

⁻ Reported concentrations are estimates made below the method reporting and detection limit. Table 3 analytical has since become more sensitive with lower reporting limits.

Recent Table 3 Data in Cape Fear River Observations

- HFPO-DA and Table 3 compounds are detected at Kings Bluff Intake
- Oct. and Nov. 2018 Chemours and CFPUA analyses detected between four to five Table 3 compounds at Kings Bluff Intake
- Table 3 compound detections in Oct/Nov samples using enhanced analytical methods are lower than the estimated May and June analytical results

Mass Flux Compartment Model Inputs

Mass Flux Compartment Model 26-27 September 2017 River Data

Potential Pathway	Consentration (ng/l-ppt)	Flow Data (L/s)	Mass Flux (ng/s)	Contribution to River Concentration (ng/L)
Up-Stream River	0	25,500	0	0
Off-Site Groundwater (Up & Down River)	147 – 179	110 – 180*	16,000 - 32,250	0.5 - 1.25
Willis Creek**	310 – 450	170 – 250	52,700 - 112,500	2.0 - 4.5
Aerial Deposition on River			6,000 [*]	0.25
Outfall 002 and facility stormwater	35	900	31,500	1.25
On-Site Groundwater (and seeps)	25,000 – 50,000	12 – 24*	300,000 – 1,200,000 [‡]	12 – 47
Surface Water Run-Off†	NA	NA	0	0
Old Outfall**	8,400	27	227,000	9
Georgia Branch Creek**	540 – 1,100	8 – 16	4,500 – 17,500	0.2 – 0.7
Total			5(5(5),6(6)0 = 0.4,62,5(6)0(0	
Measured Down River 5 Miles	39.25	25,500	1,000,000	39.25

^{*} Data are a combination of measured data, supporting calculations and best estimates selected using professional judgement.

- Largest contributors to river HFPO-DA load are: Old Outfall 002 and On-Site Groundwater / Seeps
- Groundwater has highest degree of uncertainty
- Compartments / pathways where flow and concentration can be measured rather than estimated have less uncertainty (i.e. Creeks and Outfall 002 have less uncertainty)

^{**} Historic Outfall flow and concentration data are solely from 18-January-2018; Willis Creek and Georgia Branch Creek flow data are from 18-January-2018.

[†] During 26-27 September 2017 Surface Water Run-Off not possible. No rain during/before event.

[‡] Groundwater flux range estimated assuming discharge areas of 37,000 to 20,000 m², measured LTW Wells to Cape Fear River gradients of 0.064, measured concentration range of 50,000 to 25,000 ng/L, and a estimated hydraulic conductivity of 10⁻⁵ m/s, representative of silty sand.

Mass Flux Compartment Model 9-10 May 2018 River Data

Potential Pathway	Concentration (ng/L)	Flow (L/s)	Mass Flux (ng/s)	Estimated Contribution to River Concentration (ng/L)
Up-Stream River	0	59,000 - 82,500	0	0
Willis Creek	560 - 590	115	64,500 - 68,000	0.8 - 1.2
Aerial Deposition on River ¹			3,900	0.048 - 0.067
Outfall 002 and facility stormwater	45	910 - 1,000	41,000 - 45,000	0.5 - 0.76
On-Site Groundwater (and seeps)	7,400 - 30,000	12 - 24	90,000 - 720,000	1.1 - 12.2
Surface Water Run-Off (dry)	NA	NA	0	0
Old Outfall	8,000	32	256,000	3.1 - 4.3
Off-Site Groundwater (Up & Down River) ⁵	147 – 179	110 – 180	16,000 - 32,000	0.2 - 0.55
Georgia Branch Creek	520	9	4,700	0.057 - 0.079
Total Estimated Mass Flux and Corresponding River Concentration			460,000 - 1,129,600	5.75 - 19.2
Measured ⁶ Concentration and Flow Down River 5 Miles and Calculated Mass Flux	19	69,690	1,090,800	18

^{*} Data are a combination of measured data, supporting calculations and best estimates selected using professional judgement.

- May 2018 Mass Flux Compartment model constructed using same basis as September model
- Creeks and Old Outfall 002 were sampled and gauged during the May 2018 river sampling event
- River flow volumes ranged from 2,080 to 2,920 cubic feet per second (i.e. 59,000 to 82,500 liters per second)
- Largest contributors to river HFPO-DA load are: Old Outfall 002 and On-Site Groundwater / Seeps

River Mass Flux Model Results

- Predicted concentrations vs. data from Kings Bluff Intake / CFPUA samples
 - Blue line → modeled river concentrations.
 - Circles → river HFPO-DA measurements posted online by NCDEQ, CFPUA, Brunswick County
- HFPO-DA in Cape Fear River remains below 140 ng/L after October 2017.

River Mass Flux Model Results, Zoomed in y-axis

- Predicted concentrations vs. data from Kings Bluff Intake / CFPUA samples
 - Blue line → modeled river concentrations.
 - Circles → river HFPO-DA measurements posted online by NCDEQ, CFPUA, Brunswick County
- HFPO-DA in Cape Fear River remains below 140 ng/L after October 2017.

Mass Flux Model Findings

- Cape Fear River HFPO-DA concentrations remain below 140-ng/L
- Expected river concentrations can be modelled.
- HFPO-DA River Concentrations Controlled By:
 - Outfall 002. Increases to Outfall 002 mass flux may increase river concentrations. Depends on river flow volumes.
 - Groundwater / Seeps and Old Outfall 002 These compartments account for most HFPO-DA to the river
 - River Flow Volumes. Storms add more water into river.

31-Jan-2019

FW003091

Mass Flux Compartment Model

Potential Pathway	Concentration (ng/L)	Flow (L/s)	Mass Flux (ng/s)	Estimated Contribution to River Concentration (ng/L)
Up-Stream River	0	37,000	0	0
Willis Creek	560 - 590	115	64,500 - 68,000	1.7 - 1.8
Aerial Deposition on River			3,900	0.11
Outfall 002	33	910 - 1,000	30,000 - 33,000	0.8 - 0.9
On-Site Groundwater & Seeps	7,400 - 30,000	12 - 24	90,000 - 720,000	2.4 - 19.5
Surface Water Run-Off to Outfall 002	NA	NA	0	0
Old Outfall 002	8,000	32	256,000	6.9
Off-Site Groundwater (Up & Down River)	147 – 179	110 – 180	16,000 - 32,000	0.4 - 0.9
Georgia Branch Creek	520	9	4,700	0.13
Total Estimated Mass Flux and Corresponding River Concentration	-		460,000 - 1,100,000	12 - 35
Measured Concentration and Flow Down River 5 Miles and Calculated Mass Flux	18	37,090	670,000	18

May 9-10 Data set

